

GUÍA DOCENTE

Asignatura: Teoría de máquinas

Titulación: Grado en Ingeniería del Automóvil

Carácter: Obligatoria

Idioma: Castellano

Modalidad: Presencial

Créditos: 6

Curso: 3º

Semestre: 1º

Profesor/Equipo docente: Dr. D. Heliodoro Catalán Mogorrón, Dr. D. Daniel Gómez Lendínez

(prácticas)

1. COMPETENCIAS Y RESULTADOS DE APRENDIZAJE

1.1. Competencias

Competencias específicas

CE12. Conocimiento de los principios de teoría de máquinas y mecanismos

Competencias instrumentales

- CGI1. Capacidad de análisis y síntesis
- CGI2. Capacidad de organizar y planificar
- CGI3. Conocimientos generales básicos
- CGI4. Conocimientos básicos de la profesión
- CGI5. Comunicación oral y escrita en la lengua nativa
- CGI8. Capacidad de gestión de la información
- CGI9. Resolución de problemas
- CGI10. Capacidad para la toma de decisiones

Competencias sistémicas

- CGS1. Capacidad de aplicar los conocimientos en la práctica
- CGS2. Capacidad de aprender
- CGS3. Capacidad para adaptarse a nuevas situaciones
- CGS4. Capacidad para generar nuevas ideas (creatividad)

- CGS7. Habilidad para trabajar de forma autónoma
- CGS8. Diseño y gestión de proyectos
- CGS10. Preocupación por la calidad
- CGS11. Motivación de logro.

Competencias personales

- CGP1. Capacidad crítica y autocrítica
- CGP5. Capacidad para comunicarse con expertos de otras áreas

1.2. Resultados de aprendizaje

Los efectos que cabe asociar a la realización por parte de los estudiantes de las actividades formativas son los conocimientos de la materia, la aplicación con criterio los métodos de análisis y técnicas descritos en ella, redactar utilizando un lenguaje preciso y adecuado a la misma, y aprender por sí mismo otros conocimientos relacionados con la materia, que se demuestran:

- En la realización de los exámenes parcial, final y extraordinario en su caso.
- En sus intervenciones orales en clase.
- En la memoria del trabajo de prácticas obligatorio que el estudiante entrega.

2. CONTENIDOS

2.1. Requisitos previos

Haber cursado Física I y Física II.

2.2. Descripción de los contenidos

Durante el desarrollo de la asignatura se enseñarán los principios de la teoría de máquinas y mecanismos. Se presentarán las herramientas y los conceptos fundamentales necesarios tanto para análisis como para el diseño de máquinas y mecanismos.

Temas específicos de teoría de máquinas:

- Rozamiento y lubricación.
- Cinemática.
- Dinámica de mecanismos y máquinas.
- Fundamentos de diseño de elementos de máquinas, levas y engranajes.

Prácticas:

 Las clases prácticas se llevarán a cabo en aula informática y consistirán en prácticas de simulación de sistemas dinámicos, de dificultad creciente.

2.3. Contenido detallado

Presentación de la asignatura

Explicación de la guía docente

- 1. Cinemática de mecanismos y máquinas
- 2. Dinámica de mecanismos y máquinas
- 3. Fundamentos de diseño de elementos de máquina, levas y engranajes
- 4. Rozamiento y lubricación

2.4. Actividades dirigidas

Durante el curso se desarrollarán dos tipos de actividades dirigidas: prácticas y trabajo grupal.

La parte práctica de esta asignatura se llevará a cabo en aula informática y consistirá en prácticas de simulación de mecanismos y sistemas dinámicos, de dificultad creciente.

 Actividad dirigida 1 (AD1). Los estudiantes, por cada una de las prácticas, deberá presentar obligatoriamente al profesor de prácticas un informe detallado del trabajo realizado durante la misma.

Respecto al trabajo grupal:

Actividad dirigida 2 (AD2). Trabajo práctico en equipo. Los estudiantes deberán realizar un proyecto por equipos. Tendrán que entregarlo obligatoriamente (junto a su correspondiente memoria) al profesor de prácticas para su evaluación, dentro del plazo establecido por dicho profesor. El proyecto consistirá en un mecanismo que el equipo tendrá que diseñar y construir. Tanto la naturaleza del mecanismo como la construcción del mismo serán consensuadas entre el equipo y el profesor de prácticas prevaleciendo siempre el criterio del profesor.

La calificación final de las actividades dirigidas se obtiene como la suma pondera de la nota obtenida en los informes de prácticas (30%) y el proyecto práctico en equipo (70%). En el caso de que alguno de los dos trabajos no fuera presentado, las prácticas quedarían suspensas y, como consecuencia, el estudiante suspendería la asignatura tanto en convocatoria ordinaria como en extraordinaria.

2.5. Actividades formativas

<u>Clases de teoría y problemas</u>: (1,8 ECTS, 45h, 100% presencialidad). Las clases de teoría utilizan la metodología de Lección Magistral que se desarrollará en el aula empleando la pizarra y/o el cañón de proyección. Las clases de problemas se podrán impartir en aula de pizarra.

<u>Prácticas</u>: (0,6 ECTS, 15h, 100% presencialidad). Las clases prácticas se llevarán a cabo en aula informática y consistirán en prácticas de simulación de sistemas dinámicos, de dificultad creciente utilizando simulink.

<u>Trabajo de prácticas</u>: (0,6 ECTS, 15h, 0% presencialidad). Como resultado de las prácticas de la asignatura, el alumno realizará un trabajo que entregará al profesor obligatoriamente.

<u>Tutorías</u>: (0,6 ECTS, 15h, 100% presencialidad). Consulta al profesor por parte de los alumnos sobre la materia en los horarios de tutorías o empleando mecanismos de tutoría telemática (correo electrónico y uso del campus virtual de la Universidad).

<u>Estudio individual</u>: (2,4 ECTS, 60h, 0% presencialidad). Trabajo individual del alumno utilizando los apuntes de clase, libros de la biblioteca, o apuntes del profesor disponibles en el campus virtual.

Para facilitar el estudio y la realización del trabajo de prácticas, el alumno puede acceder, en un horario amplio, a la biblioteca y al campus virtual de la asignatura, donde podrá descargar todos los apuntes, enlaces interesantes, etc. Con el estudio del alumno se completará el ciclo de aprendizaje de las competencias (conocer, saber aplicar, comunicar y autoaprendizaje) para pasar a la evaluación.

3. SISTEMA DE EVALUACIÓN

3.1. Sistema de calificaciones

El sistema de calificaciones finales se expresará numéricamente del siguiente modo:

0 - 4,9 Suspenso (SS)

5,0 - 6,9 Aprobado (AP)

7,0 - 8,9 Notable (NT)

9,0 - 10 Sobresaliente (SB)

La mención de "matrícula de honor" podrá ser otorgada a alumnos que hayan obtenido una calificación igual o superior a 9,0.

3.2. Criterios de evaluación

Convocatoria ordinaria

Sistemas de evaluación	Porcentaje
Actividades dirigidas	20%
Examen parcial	20%
Examen final	60%

Convocatoria extraordinaria

Sistemas de evaluación	Porcentaje
Actividades dirigidas	20%
Examen final	80%

3.3. Restricciones

Calificación mínima

Para poder hacer media con las ponderaciones anteriores es necesario obtener al menos una calificación de 4,5 puntos en la prueba final, tanto ordinaria como extraordinaria.

La calificación final de las actividades dirigidas se obtiene como la suma pondera de la nota obtenida en los informes de prácticas (30%) y el proyecto práctico en equipo (70%). En el caso de que alguno de los dos trabajos no fuera presentado, las prácticas quedarían suspensas y, como consecuencia, el estudiante suspendería la asignatura tanto en convocatoria ordinaria como en extraordinaria.

La no presentación de las prácticas o la falta de asistencia injustificada a más de una supone el suspenso automático de la asignatura en la convocatoria ordinaria y extraordinaria.

<u>Asistencia</u>

El alumno que, injustificadamente, deje de asistir a más de un 25% de las clases presenciales, podrá verse privado del derecho a examinarse en la convocatoria ordinaria.

Normas de escritura

Se prestará especial atención en los trabajos, prácticas y proyectos escritos, así como en los exámenes tanto a la presentación como al contenido, cuidando los aspectos gramaticales y ortográficos. El no cumplimiento de los mínimos aceptables puede ocasionar que se resten puntos en dicho trabajo.

3.4. Advertencia sobre plagio

La Universidad Antonio de Nebrija no tolerará en ningún caso el plagio o copia. Se considerará plagio la reproducción de párrafos a partir de textos de auditoría distinta a la del estudiante (Internet, libros, artículos, trabajos de compañeros...), cuando no se cite la fuente original de la

que provienen. El uso de las citas no puede ser indiscriminado. El plagio es un delito.

En caso de detectarse este tipo de prácticas, se considerará Falta Grave y se podrá aplicar la sanción prevista en el Reglamento del Alumno.

4. BIBLIOGRAFÍA

Bibliografía básica

Teoría de Máquinas. Alejo Avello Iturriagagoitia. Tecnun - Universidad de Navarra. Segunda Edición.

Elementos de máquinas. Cinemática de máquinas. Martell Pérez J., Rodríguez de Torres A. y Ramón Moliner P. UNED. 1976.

Mecánica Vectorial para Ingenieros: Estática y Dinámica. Beer F. P., Johnston E. R. y Cornwell P.J. Ed. McGraw Hill. 2010.

Teoría de máquinas y mecanismos. Shigley J.E. y Uicker. J.J. Ed. McGraw Hill. 2008.

Diseño en ingeniería mecánica de Shigley. Budynas R.G. y Nisbett J.K. Ed. McGraw Hill. 2008.

Diseño de maquinaria. Norton R.L. Ed. McGraw Hill. 1995.

Problemas resueltos de Teoría de Máquinas y Mecanismos. García Prada J.C., Castejón C. y Rubio H. Ed. Paraninfo. 2007.

Mecanismos planetarios. Lafont. P. Sección de Publicaciones de la ETSII de Madrid. 1993.

Bibliografía complementaria

Ingeniería mecánica: Estática y Dinámica. Riley. W. F. Ed. Reverté. 1995

Cinemática y dinámica de máquinas. Lamadrid Martínez A. y del Corral A. Sección de Publicaciones de la ETSII de Madrid. 1969

Traité Theorique et pratique des engrenages. Henriot G. Ed. Dunod. Paris 1960.

Cálculo de engranajes paralelos. Lafont P. Sección de Publicaciones de la ETSII de Madrid. 1997